24 research outputs found

    Exacerbation of Chlamydophila psittaci pathogenicity in turkeys superinfected by Escherichia coli

    No full text
    Both Chlamydophila psittaci and Escherichia coli infections are highly prevalent in Belgian turkeys and therefore they both might contribute to the respiratory disease complex observed in turkeys. C. psittaci can infect turkeys within the first week of age, even in the presence of maternal antibodies. However, the first C. psittaci outbreaks occur mostly at the age of 3 to 6 weeks, the period when also E. coli infections appear on the farms. Therefore, we examined in this study the pathogenicity of an E. coli superinfection on C. psittaci predisposed turkeys. Turkeys were infected with C. psittaci, E. coli or with C. psittaci followed by E. coli. Simulating the impact of an E. coli infection during the acute phase or the latent phase of a C. psittaci infection, turkeys received E. coli at 1 or 5 weeks post C. psittaci infection, respectively. E. coli superinfection during the acute phase of C. psittaci infection increased C. psittaci excretion and stimulated chlamydial replication in the respiratory tract resulting in exacerbated clinical disease. Interestingly, E. coli superinfection during the latent phase of C. psittaci infection induced chlamydial replication, leading to increased C. psittaci-specific antibody titres. In addition, chlamydial predisposition gave higher E. coli excretion compared with turkeys that had only been infected with E. coli. Overall, the present study clearly demonstrates the pathogenic interplay between C. psittaci and E. coli resulting in more severe respiratory disease.status: publishe

    Exacerbation of Chlamydophila psittaci pathogenicity in turkeys superinfected by Escherichia coli

    No full text
    Both Chlamydophila psittaci and Escherichia coli infections are highly prevalent in Belgian turkeys and therefore they both might contribute to the respiratory disease complex observed in turkeys. C. psittaci can infect turkeys within the first week of age, even in the presence of maternal antibodies. However, the first C. psittaci outbreaks occur mostly at the age of 3 to 6 weeks, the period when also E. coli infections appear on the farms. Therefore, we examined in this study the pathogenicity of an E. coli superinfection on C. psittaci predisposed turkeys. Turkeys were infected with C. psittaci, E. coli or with C. psittaci followed by E. coli. Simulating the impact of an E. coli infection during the acute phase or the latent phase of a C. psittaci infection, turkeys received E. coli at 1 or 5 weeks post C. psittaci infection, respectively. E. coli superinfection during the acute phase of C. psittaci infection increased C. psittaci excretion and stimulated chlamydial replication in the respiratory tract resulting in exacerbated clinical disease. Interestingly, E. coli superinfection during the latent phase of C. psittaci infection induced chlamydial replication, leading to increased C. psittaci-specific antibody titres. In addition, chlamydial predisposition gave higher E. coli excretion compared with turkeys that had only been infected with E. coli. Overall, the present study clearly demonstrates the pathogenic interplay between C. psittaci and E. coli resulting in more severe respiratory disease
    corecore